

CANDU Safety #17 - Severe Core Damage Accidents

Dr. V.G. Snell Director Safety & Licensing

24/05/01

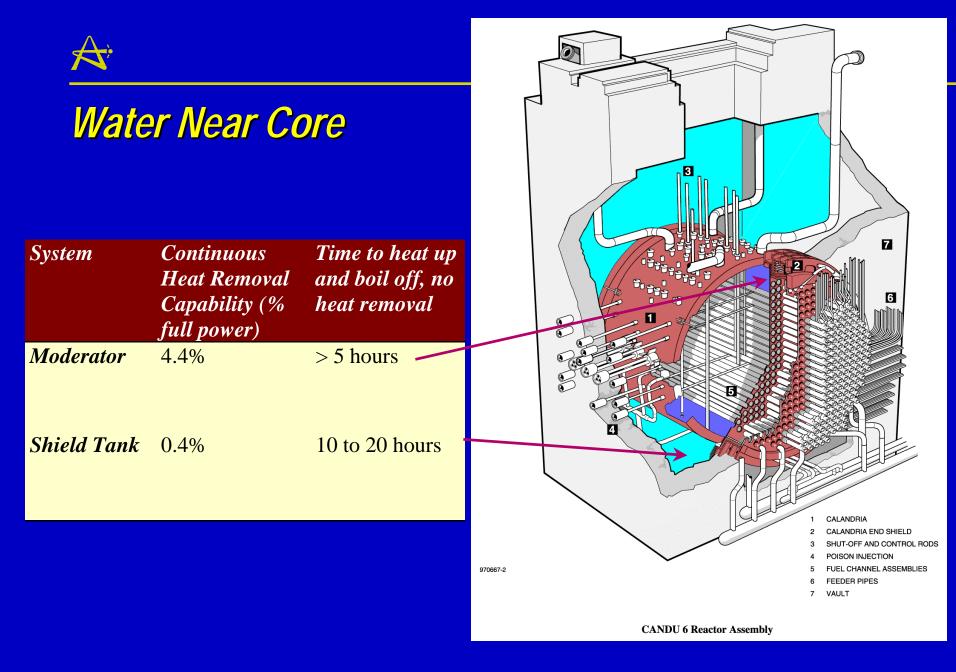
1

Severe Accidents & Severe Core Damage

- **λ** severe accident
 - no coolant in the fuel channels
 - λ e.g., LOCA + Loss of Emergency Core Cooling
 - no fuel melting
 - channel geometry preserved
- **λ** severe core damage accident
 - severe accident plus failure of moderator heat removal
 - loss of channel geometry

Initiating Event + Loss of Shutdown

- **λ** sequence:
 - initiating event, plus
 - failure of reactivity control system, including setback & stepback, plus
 - failure of shutdown system 1, plus
 - failure of shutdown system 2
- **λ** not a significant risk contributor due to very low frequency
- λ nevertheless was analyzed on Pickering-A by Ontario Hydro
 - public enquiry after Chernobyl on nuclear power in Ontario
 - Pickering-A shutdown mechanisms slower & less independent than later plants


Pickering-A Loss of Shutdown

- λ initiating event: large LOCA
- λ both shutdown mechanisms (rods, dump) fail
- **λ** power rises & fuel begins to melt at 3 seconds
- λ molten fuel fails some pressure tubes in ~3.7 seconds
- 30% of the channels failing create bubble in moderator and shut down the reactor
- **λ** calandria weld fails and discharges steam into containment
- λ containment pressure only slightly higher than design
- X CANDU fuse: failure of "lead" channels & displacement of moderator shuts down the reactor before a very large energy pulse can develop

A

Initiating Event + Loss of Heat Removal

- **λ** examples:
 - LOCA plus Loss of ECC plus loss of moderator cooling
 - loss of main feedwater + loss of auxiliary feedwater + loss of shutdown cooling + loss of Emergency Water System
 - loss of Class IV power + loss of Group 1 Class III power + loss of Group 2 Class III power
- **λ** lines of defence:
 - boiloff of moderator water
 - boiloff of shield tank water

24/05/01

Time (hr) Event

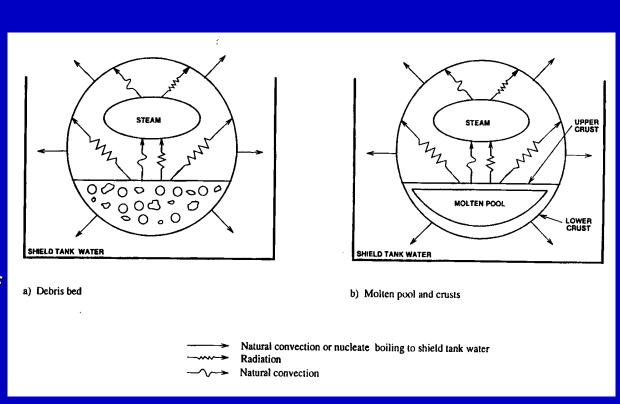
Event Sequence for a Loss of All Heat Sinks

0	Loss of heat sinks, reactor shutdown
0.75	Steam Generators boil dry, liquid relief valves open, fuel cooling degrades
0.83	A few pressure tubes fail and depressurize heat transport system
0.86	High pressure ECC initiated; medium pressure ECC assumed to fail
1.1	Heat transport system empty
5	Moderator boiled off, channels sagged to bottom of calandria
25	Vault water boiled off to top of debris bed, calandria fails
Days	Interaction of debris with vault floor & penetration to containment basement

Channel Collapse Mode

UNCOVERED CHANNELS DEFORM BY SAGGING SEGMENTS SEPARATE BY MEMBRANE STRETCHING WHEN SUFFICIENT DEFLECTION DISTANCE AVAILABLE

SUBMERGED CHANNELS FAIL AT ROLLED JOINT WHEN SUFFICIENT DEBRIS LOAD BUILDS UP (CORE COLLAPSE)


Characteristics of Debris Bed

- top channels collapse when moderator is half voided, so they sag into a pool of water
- λ debris likely to be composed of coarse pieces of ceramic materials
- bed will not be molten until all the moderator water is boiled off - will then dry out and heat up due to decay heat & remaining Zircaloy-steam reaction
- **λ** no energetic fuel-coolant interaction
- Models for heat transfer from debris bed to calandria walls developed by T. Rogers et al. for dry debris, and also debris with molten centre

Debris Bed Models

- uniform porous mixture of UO₂, ZrO₂ and/or Zircaloy
- λ fuel decay heat + metal water reaction
- thermal radiation to inner surface of calandria from top of the bed
- conduction through bottom of calandria to shield tank water

Debris Bed Heatup

- melting of debris starts about 7 hours after the event
- upper & lower surfaces of debris bed stay below melting temperature

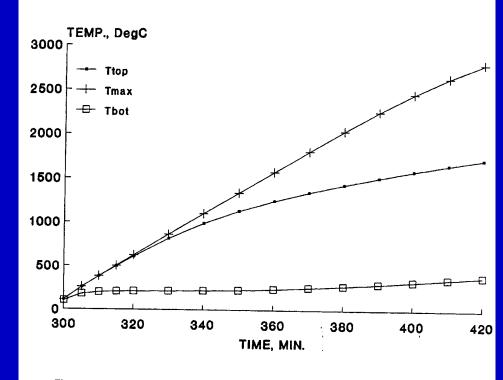
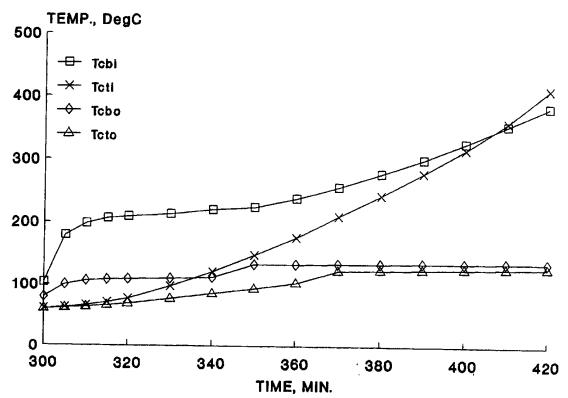



Figure 7 Heat Up of Core Debris in CANDU 6 Calandria, Reference Conditions

Calandria Wall Temperatures

- v outer surface
 temperature
 below 140C
- λ stainless steel wall
- λ do not expect
 creep under
 applied
 stresses

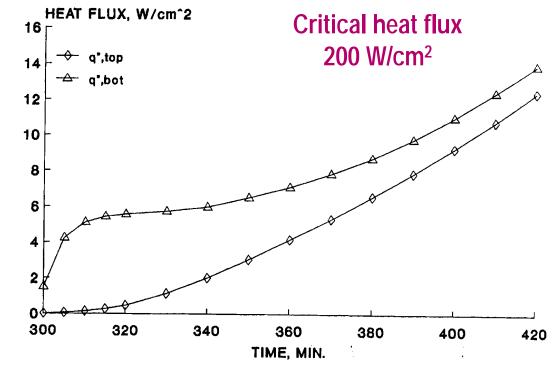

Porosity= 0.5, Pore Size= 3 cm

Figure 8 Calandria Wall Temperatures, Heat Up of Core Debris, CANDU 6 Calandria

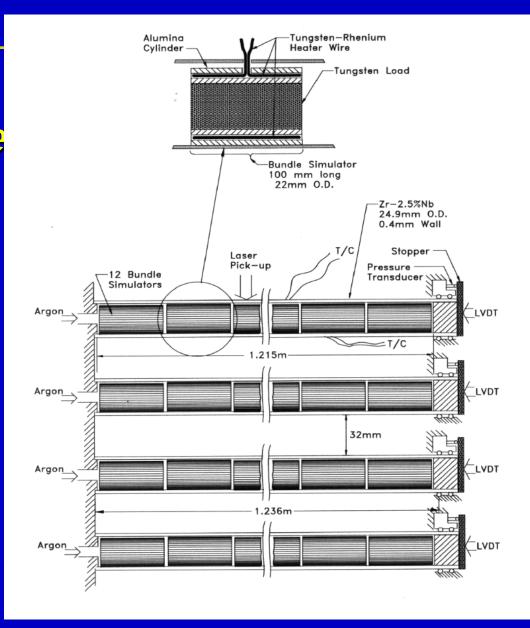
Surface Heat Flux to Shield Tank

- λ heat flux to shield tank 15 times less than CHF
- calandria will remain intact while shield tank water boils off
- behaviour insensitive to porosity and timing of metal-water reaction

Reference Conditions

Porosity = 0.05, Pore Size = 3 cm

Figure 9 Heat Fluxes on Calandria Wall, Heat Up of Debris in CANDU 6 Calandria


Uncertainties

- **λ** mechanical and thermal behaviour of end-shields
- **λ** capability of shield tank to relieve steam
- **λ** local effects in molten pool and hot-spots
- **λ** lack of experimental validation of debris melting transient
- **λ** demonstration of core collapse mode

Small Scale Tests on Channel Collapse

- x small scale study underway, ~ 1/5 scale
- x scaling to retain full size stress levels, ratio of bundle size to channel length and channel length to pitch height of assembly

Containment

- containment heat removal (local air coolers) may or may not be available depending on the accident
- **λ** if *not* available, pressure initially controlled by dousing sprays
- **λ** will eventually rise above design pressure
- structure will remain intact due to leakage through cracks and pressure relief

Observations

- **λ** severe core damage in CANDU is very different from LWRs
- **λ** low power density (16 MW/Mg of fuel at full power)
- **λ** long heatup times (hours)
- λ gradual collapse of the core into a coarse debris bed
- λ dispersion of the debris in the large calandria
 - shallow molten pool about 1 metre deep
- λ presence of two large sources of water in or near the core
- **λ** potential to stop or slow down the accident at two points:
 - channel boundary (moderator)
 - calandria boundary (shield tank)

Conclusions

- x severe accident mitigation requirements for new reactors stress the importance of two design measures:
 - core debris spreading area
 - ability to add water to cool debris
- CANDU has built them in: calandria spreads the debris, and shield tank provides cooling water
- long time scales allow for severe accident counter-measures and emergency planning
- **λ** some potential design enhancements for future plants:
 - independent makeup to moderator and shield tank
 - backup containment heat removal